Predicting protein contact map using evolutionary and physical constraints by integer programming
نویسندگان
چکیده
MOTIVATION Protein contact map describes the pairwise spatial and functional relationship of residues in a protein and contains key information for protein 3D structure prediction. Although studied extensively, it remains challenging to predict contact map using only sequence information. Most existing methods predict the contact map matrix element-by-element, ignoring correlation among contacts and physical feasibility of the whole-contact map. A couple of recent methods predict contact map by using mutual information, taking into consideration contact correlation and enforcing a sparsity restraint, but these methods demand for a very large number of sequence homologs for the protein under consideration and the resultant contact map may be still physically infeasible. RESULTS This article presents a novel method PhyCMAP for contact map prediction, integrating both evolutionary and physical restraints by machine learning and integer linear programming. The evolutionary restraints are much more informative than mutual information, and the physical restraints specify more concrete relationship among contacts than the sparsity restraint. As such, our method greatly reduces the solution space of the contact map matrix and, thus, significantly improves prediction accuracy. Experimental results confirm that PhyCMAP outperforms currently popular methods no matter how many sequence homologs are available for the protein under consideration. AVAILABILITY http://raptorx.uchicago.edu.
منابع مشابه
Comparing Mixed-Integer and Constraint Programming for the No-Wait Flow Shop Problem with Due Date Constraints
The impetus for this research was examining a flow shop problem in which tasks were expected to be successively carried out with no time interval (i.e., no wait time) between them. For this reason, they should be completed by specific dates or deadlines. In this regard, the efficiency of the models was evaluated based on makespan. To solve the NP-Hard problem, we developed two mathematical mode...
متن کامل1001 Optimal PDB Structure Alignments: Integer Programming Methods for Finding the Maximum Contact Map Overlap
Protein structure comparison is a fundamental problem for structural genomics, with applications to drug design, fold prediction, protein clustering, and evolutionary studies. Despite its importance, there are very few rigorous methods and widely accepted similarity measures known for this problem. In this paper we describe the last few years of developments on the study of an emerging measure,...
متن کاملA new approach for solving neutrosophic integer programming problems
Linear programming is one of the most important usages of operation research methods in real life, that includes of one objective function and one or several constraints which can be in the form of equality and inequality. Most of the problems in the real world are include of inconsistent and astute uncertainty, because of this reason we can’t obtain the optimal solution easily. In this paper, ...
متن کاملA Chance Constrained Integer Programming Model for Open Pit Long-Term Production Planning
The mine production planning defines a sequence of block extraction to obtain the highest NPV under a number of constraints. Mathematical programming has become a widespread approach to optimize production planning, for open pit mines since the 1960s. However, the previous and existing models are found to be limited in their ability to explicitly incorporate the ore grade uncertainty into the p...
متن کاملA max-margin model for predicting residue–base contacts in protein–RNA interactions
Motivation: Protein–RNA interactions (PRIs) are essential for many biological processes, so understanding aspects of the sequence and structure in PRIs is important for understanding those processes. Due to the expensive and time-consuming processes required for experimental determination of complex protein–RNA structures, various computational methods have been developed to predict PRIs. Howev...
متن کامل